

Robust control applied to minimize Nox emissions

Dominique Nelson-Gruel, A. Charlet, Y. Chamaillard and G. Colin University of Orléans

Motivations

- 1 Pollutants emissions standards level (PM, NOx) 🍃
- 2 Number of actuators *№*
- $\frac{3}{3}$ manufacturing tolerances, aging and drift of components \nearrow
- 4 Calibration and validation of control laws ↗
- **5** Overall vehicle development cost *▶*

I solution "control strategies on pollutant emission"

Motivations

- NOx formation depends on :
 - incomplete combustion of oxygen
 - in-cylinder gas temperature / pressure,
 - availability of oxygen,
 - residence time of fuel/gas mixture.
- PM formation depends on :
 - incomplete combustion of the fuel,
 - low air/fuel ratio values,
 - in-cylinder gas temperature,
 - availability of oxygen.

EGR rate Start of injection (SOI)

Swirl or Tumble valve

Motivations

> Engine calibration :

• must work well for all engines and all Operating point

• in spite of manufacturing tolerances, drift.

Time wasting

> Engine control:

- EGR and turbine flows (VGT) are driven by exhaust gas
- PM/NOx trade-off depends on in-cylinder temperature (EGR, SOI)
- -> Strong coupling

Model based robust control that coordinate EGR, VGT, SOI especially during transient operations

Legislation box

Calibration point

Drift/ manufacturing tolerances

25

PM (ma/m³)

20

30 35

40

950

900

850

800

700 650

550 500

5

10 15

[udd] 750 N 700

How to?

• To solve the pollutant emissions minimization problem using feedback we need :

 \Rightarrow a virtual sensor (estimator of pollutant quantities)

```
Extended Zeldovich Mechanism

O + N2 \Leftrightarrow NO + N

N + O2 \Leftrightarrow NO + O

N + OH \Leftrightarrow NO + H

\frac{d[NO]}{dt} = k_1^+[O]_e[N_2]_e - k_2^+[N]_e[O_2]_e + k_3^+[N]_e[OH]_e

k_1^-[NO]_e[N]_e + k_2^-[NO]_e[N]_e + k_3^-[NO]_e[H]_e

Good results / no real-time
```


How to?

• To solve the pollutant emissions minimization problem using feedback we need :

⇒ a virtual sensor (estimator of pollutant quantities)

Extended Zeldovich Mechanism

 $\frac{d[NO]}{dt} = k_1^+[O]_e[N_2]_e - k_2^+[N]_e[O_2]_e + k_3^+[N]_e[OH]_e$

 $k_1^{-}[NO]_e[N]_e + k_2^{-}[NO]_e[N]_e + k_3^{-}[NO]_e[H]_e$

Not real-time

Methodologies based on :

✓ expensive sensors (Pcyl)

✓ using calibrated model

Time consumming / Not precise on transient

NSA PRIMA

 \Rightarrow a fast and accurate sensor (Siemens VD sensor with time response of 0.4 sec and variable time delay)

- he regetique Case of application
- Peugeot DV6: a 1.6 liter diesel engine with 4 cylinders
- Air-path actuators : variable geometry turbine and egr valve
- Fuel-path actuators : Start of injection and fuel quantity

• System : 3 inputs and 3 outputs

8

Identification

Multi-sinus

- System : 3 inputs (EGR, VGT, SOI) and 3 outputs (MAF, Pboost and NOx)
 - Exciting each input with a multi-sinus signal
 - obtain frequency response of the system for 1 operating points
 - → Do this for all operating point (14 for my case)

CRONE control

CRONE is a French acronym which means: non integer order robust control
 → Design of robust controllers using fractional order transfer functions

- O Frequency-domain and loop-shaping based methodology using fractional differentiation orders as high-level design parameters (since 1975 3 generations): $(d/dt)^{a+ib} \rightarrow s^{a+ib}$ (linear operator)
- Use of the common unity-feedback configuration

- Control of minimum or time-varying plants, nonlinear plants, unstable plants or plants with time-delay
- 3rd generation has been extended to *m* x *n* MIMO plant (full MIMO approach or 2 decentralized approaches)

CRONE control: SISO system

Using fractional complex integration order as shaping parameters, the aim of the method is to find a nominal open-loop transfer function

$$\beta_0(s) = G_0(s)K(s) \approx \left(\frac{\omega_{cg}}{s}\right)^{a+ib}$$

such that:

- its Nichols locus tangents a M_{r0} required magnitude contour
- when *G* differs from G_0 , it minimizes a cost function as:

$$J = (M_{\rm rmax} - M_{\rm r0})^2 + (M_{\rm rmin} - M_{\rm r0})^2$$

• while respecting the following constraints on the sensitivity functions

$$\sup_{G} |T(j\omega)| \le T_{u}(\omega) \qquad \sup_{G} |S(j\omega)| \le S_{u}(\omega)$$

$$\inf_{G} |T(j\omega)| \ge T_{1}(\omega) \qquad \sup_{G} |SG(j\omega)| \le SG_{u}(\omega)$$

$$\sup_{G} |CS(j\omega)| \le CS_{u}(\omega)$$

CRONE confrol: SISO system

here nl = 2 and nh = 4

optimized from high-level parameters $n_{\rm l}$, $n_{\rm h}$, $a, b, \omega_{\rm l}, \omega_{\rm h}, \omega_{\rm h}$, $\omega_{\rm r}$ and K.

Each parameter acts only on one shape feature of nominal (and perturbed) $\beta(j\omega)$, and thus can be easily optimized.

CRONE control: MIMO system

• Objective: to get a decoupled (diagonal) closed-loop transfer function matrix for the nominal state of the plant

$$\mathbf{T}_{0}(s) = (\mathbf{I} + \boldsymbol{\beta}_{0}(s))^{-1} \boldsymbol{\beta}_{0}(s) = diag \left[\frac{\beta_{0ii}(s)}{1 + \beta_{0ii}(s)} \right]_{1 \le i \le n} = diag \left[T_{ii}(s) \right]_{1 \le i \le n} \begin{bmatrix} T_{0_{11}} & 0 & 0 \\ 0 & T_{0_{22}} & 0 \\ 0 & 0 & T_{0_{33}} \end{bmatrix} \text{ for } n = 3$$

 $\circ~$ Nominal open-loop matrix β_0 is also diagonal

$$\boldsymbol{\beta}_0(s) = \mathbf{G}_0(s)\mathbf{K}(s) = \operatorname{diag}[\boldsymbol{\beta}_{0ii}(s)]_{1 \le i \le n}$$

$$\begin{bmatrix} \beta_{0_{11}} & 0 & 0 \\ 0 & \beta_{0_{22}} & 0 \\ 0 & 0 & \beta_{0_{33}} \end{bmatrix} \text{ for } n = 3$$

• Cost function
$$J = \sum_{i=1}^{n} \left(\max_{\substack{i \in J \\ G \ o}} \sup |T_{ii}(j\omega)| - \min_{\substack{i \in J \\ G \ o}} \sup |T_{ii}(j\omega)| \right)$$

• Frequency-domain constraints

$$\begin{aligned} \sup_{G} |T_{ij}(j\omega)| &\leq T_{u_{ij}}(\omega) \\ \sup_{G} |S_{ij}(j\omega)| &\leq S_{u_{ij}}(\omega) \\ G \\ \sup_{G} |SG_{ij}(j\omega)| &\leq SG_{u_{ij}}(\omega) \\ G \end{aligned}$$

 $\searrow 2$

$$\inf_{G} |T_{ij}(j\omega)| \ge T_{1ij}(\omega)$$

$$\sup_{G} |KS_{ij}(j\omega)| \le KS_{uij}(\omega)$$

CRONE control: MIMO system

$$\mathbf{K}(s) = \mathbf{P}(s)\boldsymbol{\beta}_{0}(s) \text{ with } \mathbf{P}(s) = \mathbf{G}_{0}^{-1}(s) = \begin{bmatrix} p_{11}(s)e^{\gamma_{11}s} & \cdots & p_{1n}(s)e^{\gamma_{1n}s} \\ \vdots & p_{ij}(s)e^{\gamma_{ij}s} & \vdots \\ p_{n1}(s)e^{\gamma_{n1}s} & \cdots & p_{nn}(s)e^{\gamma_{nn}s} \end{bmatrix}$$

$$K_{ij}(j\omega) = p_{ij}(j\omega)e^{\gamma_{ij}j\omega}\beta_{0\,jj}(j\omega)$$

- **K** is achievable and the closed-loop system is internally stable and damped if $\beta_{0ii}(s)$ includes:
 - ▶ time-delay γ_{ij} of p_{0ij}(s)
 ▶ poles defined by RHP or undamped poles of g_{0ji}(s)
 - zeros defined RHP or undamped poles of p_{ii}(s)

• Rational $K_{\text{R}ij}(s)$ is obtained by identifying the ideal frequency responses $K_{ij}(jw)$ by low-order transfer functions:

$$K_{\mathrm{R}_{ij}}(s) = \frac{B(s)}{A(s)}$$

Analysis of the nominal plant

- stabilization of the **CS**(s) : the determinant of **G**₀(s) has a right half plane pole (+15.597) that thus needs to be included (as zeros) in $\beta_{011}(s)$, $\beta_{022}(s)$ and $\beta_{033}(s)$.
- Low frequency accuracy specifications are ensured by :
 - $n_{\rm l} = 1$ for $\beta_{011}(s)$,
 - $n_1 = 1 \text{ for } \beta_{022}(s)$,
 - $n_{\rm l} = 1$ for $\beta_{033}(s)$.
- High-frequency control efforts are limited with :
 - $n_{\rm h} = 4 \text{ for } \beta_{011}(s)$,
 - $n_{\rm h} = 3 \text{ for } \beta_{022}(s)$,
 - $n_{\rm h} = 4$ for $\beta_{033}(s)$.

- The nominal resonant peak for $\beta_{011}(s)$ and $\beta_{022}(s)$ is 2 and $M_{r033} = 1$ for $\beta_{033}(s)$.
- The controller will be achievable if :
 - Time-delay for first loop : 0.09s,
 - Time-delay for second loop 0.1s,
 - Time-delay for third loop 0.44s.

Opfimization of open-loop parameters

Complementary Sensitivity function

- $\circ~$ Decoupling for the nominal plant (gain around -250dB for off-diagonal of \mathbf{T}_0
- Decoupling specification also satisfied for the perturbed plant.
- Frequency-domain constraints are reached or slightly exceeded; the bandwidths cannot be increased more.

Rational controler synthesis

• The frequency response of the controller is also given by :

 $\mathbf{K}(\mathbf{j}\omega) = \mathbf{G}_0^{-1}(\mathbf{j}\omega)\boldsymbol{\beta}_0(\mathbf{j}\omega)$

 Using identification toolbox of Matlab/Simulink we approximate this frequency response by a rational and linear matrix transfer function.

Time domain validation

19/11/2014

Ingénierie des Systèmes, Mécanique, Énergétique

17

Time domain validation

How about PM?

Using a cheap sensor we can control NOx emissions

With this control design we can also :

- Adjust the engines behaviour,
- Moved the calibration point.

It can handle larger manufacturing tolerances

- compensation of deviation and on-line calibration
- Allows changing conditions such as environmental changes and ageing

But there is a trade-off between PM emissions and NOx emissions
 → Lower NOx level increasing PM level!

How about PM?

o But there is a compromise between PM emissions and NOx emissions
 → Lower Nox level increasing PM level!

How about PM?

o But there is a compromise between PM emissions and NOx emissions
 → Lower Nox level increasing PM level!

How about PM?

o But there is a compromise between PM emissions and NOx emissions
 → Lower Nox level increasing PM level!

Thank you

Dominique.gruel-nelson@univ-orleans.fr

