

Optimal Energy Utilization in Conventional, Electric and Hybrid Vehicles and its Application to Eco-Driving

Thesis defended by: Felicitas Mensing

Advisors:

Eric Bideaux Rochdi Trigui

- AMPERE INSA Lyon - LTE/ IFSTTAR

03. October 2013

2/56

The problem:

not sustainable

- Non-renewable fossile fuels ←→# of vehicles increases^[1] + oil peak 2006^[2]
- Significant contribution to global warming^[3]

[1] EEA. Car Ownership rates projections, 2010. <u>http://www.eea.europa.eu/data-and-maps/figures/car-ownership-rates-projections</u>.
 [2] The Oil Drum. Oil production in the 21st century and peak oil, 2012. <u>http://oilprice.com/Energy/Cruide-Oil/Oil-Production-in-the-21st-Centry-and-Peak-Oil.html</u>.
 [3]EEA. Total greenhouse gas emissions by sector in eu-27,2007,www.eea.europa.eu

[4] IPPC. Climate change 2007: Working group ii: Mitigation of climate change; 5.3.1.2. Improving drive train efficiency. http://www.ipc.ch.
[5] IEA. Eight countries join IEA electric vehicle initiative, 2010. evworld.com.
[6] Lino Figueiredo, Isabel Jesus, J.A. Tenreiro Machado, Jose Rui Ferreira, J.L. Martins de Carvalho. Towards the development of

intelligent transportation systems. IEEE Intelligent Transportation Systems Conference Proceedings, August 2001

State of the art:

Velocity trajectory optimization:

- On one specific vehicle (drive train)^{[17]-[19]}
- For a specific situation (driving over hills,...)^{[19],[20]}
- Ideal, theoretical studies
- Cost == Fuel consumption (only one study on eco-driving & emissions^[21])
 ADAS systems:
- Several reportive systems → trip and/or vehicle information BUT information given after trip ^{[22],[23]}
- Advisory (real-time) systems → mostly use simple algorithm, rule-based optimization (sub-optimal)^{[24]-[26]}

^[22] Fiat. Fiat EcoDrive, April 2012. http://www.fiat.co.uk/ecodrive/

^[23] A. Swianesta, LS log zzella Walvanh, HaallenbalFuld Holds Andule approximation of the end of the participation of 20, ASD 2002008. [28] Masch & valende B. Voorger, Aprotectoper fise Met Societ how shapped introde Texas postation for the factor of the participation of 20, Aproximation of 20, Aproximation of the participation of the parting the participation of the participation of the participation o

Focus of this thesis:

- Potential gains of eco-driving: Identification of vehicle specific optimal operation for various vehicle architectures (CV,EV, HEV)
- 2. Limitations of eco-driving due to constraints: Traffic and emissions
- 3. Integration of numerical optimization algorithm in the development of an effective advanced driver assist system (ADAS) for eco-driving

Outline

Introduction

System modeling

- Optimizations direct modeling
- Results Analysis
- Conservation drive train Dynamic Programming Optimization Method
 - Application of DP to our problem
- Advanced Diver Assist System (ADAS)
- Experimental setupAS system
 - Experimentation
 - Ecologic (eco2) vehicle operation

System Modeling

Inverse versus direct modeling

The vehicle chassis

The vehicle drive train

Optimization

Problem definition

Equation of motion: 2 state variables (d,v)

$$\frac{d}{dt} \begin{bmatrix} d \\ v \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} d \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} a$$

$$\begin{split} d_{i+1} &= d_i + v_i \Delta t + \frac{1}{2} a_i \Delta t^2 \\ v_{i+1} &= v_i + a_i \Delta t \end{split}$$

Cost function

$$\Gamma_1 = \int_t \gamma_{veh}(t) dt \approx \sum_{i=1}^n \gamma_{veh_i}(t_i \to t_{i+1}) f(\mathbf{v}, \mathbf{a})$$

$$\begin{split} \gamma_{veh}^{conv}(t) &= \dot{m}_{fuel_i}(t_i - > t_{i+1})\Delta t_i \\ \gamma_{veh}^{elec}(t) &= P_{batt_i}(t_i - > t_{i+1})\Delta t_i \\ \gamma_{veh}^{hyb}(t) &= \dot{m}_{fuel_i}(t_i - > t_{i+1})\Delta t_i - \alpha \Delta SOC(\Delta t_i) \end{split}$$

Trip constraints

Introduction

System

Aie

modeling

Optimizatior

 $d(0) = d_0 \qquad d(t_f) = d_f$ $v(0) = v_0 \qquad v(t_f) = v_f$ $t_f = T$

Dynamic Programming Optimization
 Heuristic methods (ex: genetic algorithm)^[29] Global optimal is not always identified Dependent on initialization parameter →local minimum
Deterministic methods Literature review • Pontryagin's maximum principle ^[30] • • A Used for problems with simple constraints • Constraint megration is not trivial • • Bellman principle (ex: Dynamic Programming (DP)) ^{[31],[32]} • Computational effort grows with dimensions • C • Used when discreet problem with complex constraints
Our problem: complex constraints, varying cost function (conventional, electric hybrid) 14(5):455-470, 2004. [30] E. Hellstroem, J. Aslund, L. Nielsen. Horizon Proceedings 6th IFAC Symposium on Advances [31] J.N. Hooker. Optimal driving for single-vehicle fuel economy. Transportation Research A. 183-201, 1988. Dynamic Programming Optimization Method

Application of DP to our problem

Application of DP to our problem

[38] R.P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. The Computer Journal, 14(4):422-425.1971.

Results/ Analysis

Potential gains of eco-driving

[39] R. Trigui, B. Jeanneret, B. Malaquin, C. Plasse. Performance comparison fo three storage systems for mild-HEVs using PHIL simulation. IEEE Transactions on Vehicular Technology, 3959-3969, 2009. [40] Dspace MicroAutoBox <u>http://www.dspace.com/de/gmb/home/products/hw/micautob.cfm</u> [41] AVL. https://www.avl.com

Introduction System modeling En-Optimization Results/ Analysis Constraint integration

ADAS

Conclusion

Potential gains of eco-driving

urban and extra-

urban area

drive cycle	original $[L/100km]$	eco $[L/100km]$	reduction [%]	1
NEDC	6.7	5.5	17.9	V
HYZURB	9.76	7.11	27.2	
HYZROUT	7.22	5.41	25.1	
HYZAUTO	6.92	6.37	7.9	
				l

Highway/ freeway driving

Significant reductions in fuel consumption

Optimal vehicle operation

Optimal vehicle operation

Introduction

Constraint Integration

- Traffic
- Emissions

Economic vehicle operation

Is eco-driving environmentally friendly?

- Eco-driving can be economic and ecologic:
 - →Emissions need to be taken into account
- Component operation/ transmission
 reduce emissions

Advanced Driver Assist System (ADAS)

Development of ADAS system - HMI

educational display

continuous display

43/56

Development of ADAS system - HMI

Continuous display

Williow ta addiciee

Results

Average Gain: 11%

System modeling

 Inverse model of three vehicles (conventional, electric and hybrid)

Introductior

System

modeling

timizatio

Results/

Analysis

Constraint

integration

ADAS

Conclusion

- Dynamic programming optimization → energy optimal vehicle operation for given mission (3D → 2D + weighting factor)
 - Analysis/ Comparison of optimal vehicle operation
- Eco-driving with constraints Traffic and emissions
- Integration of algorithms in ADAS

46/56

Communications

Conference papers

- F. Mensing, R. Trigui, E. Bideaux. Vehicle trajectory optimization for application in ECO-driving. 2011 IEEE Vehicle Power and Propulsion Conference (VPPC)
- F. Mensing, R. Trigui, E. Bideaux. Vehicle trajecotry optimization for hybrid vehicles taking into account battery state-of-charge. 2012 IEEE Vehicle Power and Propulsion Conference (VPPC)
- F. Mensing, R. Trigui, E. Bideaux. Vehicle trajeoctyr optimization of electric vehicles for eco driving applications. 2012 European Electric Vehicle Conference (EEVC)

Journal papers

- F. Mensing, E. Bideaux, R. Trigui, H. Tattegrain. Trajectory optimization for eco-driving taking into account traffic constraints. Transportation Research Part D: Transport and Environemnt, 18(1):55-61, 2013
- F. Mensing, E. Bideuax, R. Trigui, B. Jeanneret. Trajectory optimisation for eco-driving an experimentally verified optimisation method. International Journal of Vehicle Systems, Modelling and Testing, accepted to be published 2013

Journal papers in progress

- F. Mensing, E. Bideaux, R. Trigui, J. Ribet, B. Jeanneret. Eco-driving: An economic or ecologic driving style? Transportation Research Part C: Emerging Technologies.. Submitted for review 2013
- F. Mensing, E. Bideaux, R. Trigui, H. Tattgetrain. Development of an effective and safe ADAS for eco-driving. In progress

Other stuff

Vehicle model of electric and hybrid vehicle

- Soptimization (Multi-Obj)
- Sesults Electric
- Sesults (Optimization) Hybrid
- Traffic constraint study

System Modeling – Chassis/Aero

System Modeling- Conventional Vehicle

Solution States (Solution States)

Constant auxiliary power (P_{aux}=300W)

System Modeling- Conventional Vehicle

The conventional vehicle (inverse)

Energy consumption as a function of vehicle speed and acceleration

- 1.6L gasoline engine
- T_{max}: 160Nm(4250rpm)
- P_{max}: 88kW(6000rpm)

Engine map: Instantaneous fuel consumption in g/kWh

System Modeling – Electric vehicle

System Modeling- Electric vehicle

System Modeling- Hybrid Vehicle

Service (Service) - Servic

Gear

System Modeling- Hybrid Vehicle

Service Hybrid Vehicle (inverse) - Prius

Toyota Prius II M=1360kg Permanent magnet synchronous AC motors NiMH battery (1.3kWh) 1.5L gasoline engine (Atkinson cycle)

$$\omega_{ring} = \omega_{EM1} = \omega_{wheel} R_{FD}$$
$$T_{ring} = (T_{drive} - T_{brakemech}) \frac{\eta_{FD}^{\psi}}{R_{FD}} - T_{EM1}$$

$$\omega_{sun} = R_g \omega_{ring} + (1 - R_g) \omega_{planet}$$
$$T_{sun} = -\frac{1}{1 - R_g} T_{planet} = \frac{1}{R_g} T_{ring}$$

Static modeling of planetary

System Modeling- Hybrid vehicle

 $P_{battout} = T_{EM1}\omega_{EM1} + PlossEM1 + T_{EM2}\omega_{EM2} + P_{lossEM2} + P_{aux}$

$$P_{battout} = V_{OCV}I_{batt} - I_{batt}^2R$$
$$= U_{batt}I_{batt}$$
$$P_{batt} = V_{OCV}I_{batt}$$

System Modeling- Hybrid vehicle

Hybrid Vehicle (inverse) – Control Strategy

Optimization of vehicle operation \neq Control strategy

Hybrid mode

- $SOC < SOC_{minhyb}, v > v_{vehmaxelec}$
- BMS computes Pdembatt
- Power losses are estimated Ploss
- Total power req from engine is calculated
- Engine speed, torque chosen for max efficiency

Electric mode

VS

• EM1 provides output power

$$P_{batt} = f(v, a) + \text{SOC}$$
$$\Delta SOC = -\eta_{far} \frac{I_{batt}/3600\Delta t}{C_{ah}/100}$$

Dynamic Programming Optimization Method

Soot finding methods

Multi-objective optimization:

$$\gamma_{21} = \sum_{i=d_0}^{d_f} \gamma_{veh_i}(d_i)$$

$$\Gamma_{22} = \sum_{i=d_0}^{d_f} \Delta t_i(d_i)$$

Service A Pareto optimal:

- On front if p satisfies $J_n(p) < J_n(i)$ one objective n

for all points i and at least

– Q not on front if there extist a p s.th. $J_n(p) < J_n(q)$ For all n

Solution Multi-objective optimization (Dynamic Programming):

Solution Multi-objective optimization (Dynamic Programming):

Optimization method	Δ t	Δ d	Δ v	trunc pts	computation	trajectories
					time [sec]	calculated
3D Fixed time method	2	1	1	-	240-280	1
2D Flexible time method	-	5	.2	10	155	10
2D Flexible time method	-	5	.2	30	241	30

Solution Series Series

Results Electric

Sonsumption in Wh

cycle	original cycle	eco cycle	$_{gain}$
AIXAM1	872.2	705.56	19.3%
AIXAM2	89.4	85.56	4.5%
AIXAM3	283.3	248.89	12.1%
AIXAM4	427.78	386.11	9.4%

Results Electric

components	original cycle (mo-	eco cycle (motor/gen-
	tor/generator phase)	erator phase)
Final Drive [%]	94	94
Electric Motor [%]	70.82/57.14	69.4/59.5
Battery [%]	92.8/99.31	92.87/99.29

Optimization forward:

Optimization forward:

$$\gamma_{veh}^{hyb}(t) = \dot{m}_{fuel_i}(t_i - > t_{i+1})\Delta t - \alpha \Delta SOC(\Delta t_i)$$

- Initialize optimal costs at $k_1 = 2$: $J^*_{[2,i]} = J_{[1,i_0->2,i]}$
- Increment k_1 and find the optimal cost at each state by comparing $J_{[k_1,i_2]}^* = \min_{i_1} (J_{[k_1-1,i_1->k_1,i_2]} + J_{[k_1-1,i_1]}^*)$ while storing the optimal indices
- Compute the optimal trajectory by retracing the stored indices

Hybrid Vehicle Consumption

Results for different battery weighting

Results for different battery weighting (gain ~20%)

Results for different battery weighting

components	original cycle (motor/gener-	eco cycle (motor/generator	
	ator phase)	phase)	
Final Drive [%]	97	97	
EM1 [%]	86.2/87.2	87.2/89.4	
EM2 [%]	88.1/88.2	90.8/90.7	
Engine [%]	35.1	35.0	
Battery [%]	96.3/91.4	96.7/94.7	

Vehicle following situation

Optimization input

Sesults- Constraints

Emission study

bynamic gear choice

Emission study

bynamic gear choice

ADAS

Section 44 ADAS algorithm

Sesult distribution