## GTAA 2014 - Orléans

## Smart and Green Autonomous Vehicle Controller: Enhancement of Regeneration and Powertrain Strategy

S. GLASER, D. GRUYER,, O.ORFILA (IFSTTAR / LIVIC) S. AKHEGAONKAR (INTEDIS, IBISC / UEVE) F. HOLZMANN (INTEDIS, Germany) L. NOUVELIERE (IBISC / UEVE et IFSTTAR/LIVIC)











eFuture



- Funded by the European Commission (grant no. 258133)
  - Duration 3 years (until September 2013)
  - Budget ca. 7 Mio. Euro
  - Funding ca. 4 Mio. Euro
  - 6 partners from 4 countries
    4 from industry
    2 research institutes
  - Coordinator: Intedis, Würzburg
- Develop a safe and efficient electric vehicle



# Outline of the presentation

- Motivations
- Enhanced ACC
- Module integration
- Simulation / Experimental results and discussion

# Motivations

- Existing technology
  - Adaptive Cruise Control is now widely spread
  - Communications and navigation devices now fit in everyone pockets !
- Electric vehicle is still a challenge
  - Limited Range
  - Regenerative capacity

## **Traditional method**

#### Limited communication between ADAS and energy management systems



## Technologies that will set the prerequisites



Defining properties for the next generation of vehicle controllers

## They are already here!

#### Eco-driving rules

 Predicted in 1956-57 : Central Power & Light Company newspaper adverts

Ensure proper gear selection

- oneer Project: EUREKA Prometheus [1]]987-95) with €800 mi. funding
- Shift into a higher gear early
- Leave vehicle in gear when braking
- Maintain a steady speed at highest possible gear
- Look ahead and anticipate traffic flow or Eco-driving
   rototype : 300,000 plus miles
- Switch off engine at short stops

- DARPA challenge : 2004, '05, '07
- Make use of in-car fuel saving devices such as on-board computers and dynamic navigation to avoid traffic jams

lercedes Bertha

## **Electrification and Hybridisation**



- Serial, Parallel, Powersplit hybrids
- Efficiency
- Emissions
- Driving Range
- Component cost
- Oil independence
- BEV HEV PHEV



ICE  $\eta$ = 0-30 %



eMotor  $\eta$ = 70-95 %





Battery: 0.7 km/kg\*

\*Approximate Estimation

0il : 16 km/kg\*

## Navigation Guidance & eHorizon



Approx. Location

Approx. movement properties

- ICT Information Communication systems
- **ITS** Intelligent Transportation systems
- V2V Vehicle to vehicle communication
- V2I Vehicle to infrasture communication

Approaching road conditions

DSRC communication with traffic signals

**Beyond Horizon events** 

Right of space usage

Emergency brake warning

Confirmation for overtaking maneuver

Unavoidable collision warning

Vehicle breakdown warning



### eco-Motion Control



# Outline of the presentation

- Motivations
- Enhanced ACC
- Module integration
- Simulation / Experimental results and discussion

# From ACC to Enhanced ACC

- Conventional ACC
  - Detects the front vehicle
  - Manages speed and relative distance
    - Safety and confort constraints
    - Generate acceleration demand
  - Detailed in ISO norms
- Enhanced ACC
  - Takes into account regenerative aspect during deceleration
  - Does not compromise safety
  - On an Automotive ECU

When can we regenerate?

- Regeneration is related with limited
   Digital Map integration
  - Use case 1 : Speed limit change
  - Use case 2 : Sharp curve that needs speed adaptation
  - Use case 3 : Vehicle following
- Safety aspect

- Low impact : use case 1 and 2

- High impact : use case 3

**Environment perception enhancement** 

## Smart and Green ACC (SAGA)

Autonomous cars

Navigation

**Green Energy** 

*SAGA* function is an autonomous longitudinal vehicle motion controller which actively optimizes safety and efficiency

- > E-Horizon
- > Vehicle position, velocity, altitude, headway spacing...
- > Distance to destination, traffic situation, speed limits...
- > Gradients, dangerous road curves...

- > Energy optimisation and cruise control Green ACC
- > SAGA : Complete automatic longitudinal vehicle controller

## SAGA concept and applications







Max\_deceleration = f(speed)

**City driving**: Motor braking sufficient Small energy packets available for regeneration 50 kph to 0 kph -approaching traffic signal

#### **Highway driving:**

Motor braking insufficient (optimization required) Attractive maneuvers for energy recuperation

Approaching slow moving vehicle Approaching speed limits Approaching a curve

# Outline of the presentation

- Motivations
- Enhanced ACC
- Module integration
- Simulation / Experimental results and discussion

# **Digital Map integration**

- Vehicle positionning
  - GPS
  - Vehicle sensors
    - Inertial
    - Steering angle
    - Wheel speed
- Digital Map
  - Digital infrastructure supported by caorto
  - Additional data
    - Road geometry
    - Speed limit
  - Automatic process for accurate data



# **Environment perception**

- Front long range radar
  - Continental ARS 300
  - Relative distance and speed of front obstacle
- 4 cameras
  - Lane detection
  - Front near obstacles (stereo)
- Lane association of obstacles



# In vehicle integration



Micro-controllers from Hella integrate control functions (AUTOSAR), feeded by perception modules Vehicle from TMETC (modified eVista)



### <u>eMotor (x2) :</u> 30 kW PMSM with 750 Nm peak torque Integrated reduction gear

# Outline of the presentation

- Motivations
- Enhanced ACC
- Module integration
- Simulation / Experimental results and discussion

# Digital map and speed profile

- Speed is limited by
  - Available road friction
  - Driver desired
     lateral / longitudinal
     acceleration
  - Regenerative deceleration

$$\max\left(\frac{\mu_{lat_{f}}^{2}}{\lambda_{lat}^{2}\mu_{max}^{2}} + \frac{\mu_{lon_{f}}^{2}}{\lambda_{lon}^{2}\mu_{max}^{2}}, \frac{\mu_{lat_{r}}^{2}}{\lambda_{lat}^{2}\mu_{max}^{2}} + \frac{\mu_{lon_{r}}^{2}}{\lambda_{lon}^{2}\mu_{max}^{2}}\right) = 1$$

$$\mu_{lon_{r}}^{2} + \mu_{lon_{f}}^{2} \leq \left(\frac{\gamma_{d}(V)}{g}\right)^{2} \quad (during \ deceleration)$$

$$q_{n}\left(\left(1 + \mu_{n}\right), \sqrt{q_{n} + \mu_{n}^{2}}\right) \leq 1$$

$$V^{2} = \frac{g}{\rho_{r}} \left( \left( 1 - \frac{H}{L_{f}} \theta_{r} \right) \sqrt{\left( 1 - \frac{\theta_{r}}{\lambda_{lon} \mu_{max}} \right)} \lambda_{lat} \mu_{max} - \varphi_{r} \right)$$

$$\left|1 = \left(\frac{1}{\lambda_{lat}\,\mu_{max}}\frac{\frac{\rho_r V^2}{g} + \varphi_r}{1 - \frac{H}{L_r}\left(\frac{V}{\gamma}\frac{dV}{ds} - \theta_r\right)}\right)^2 + \left(\frac{1}{\lambda_{lat}\,\mu_{max}}\left(\frac{V}{g}\frac{dV}{ds} - \theta_r\right)\right)^2\right|$$



# Perception and dist. regulation

### Vehicle following a slower vehicle

- Several strategies are evaluated and must achieve safety constraints
  - Only regenerative braking
    - long time headway
  - Regenerative braking and Emergency braking
    - headway close to ACC headway,
    - strong deceleration
  - Regenerative braking and conventional braking
    - Acceptable time headway



# In vehicle integration

- Speed profile impact
  - Speed limit change from 90 to 50 km/h
    - Smooth deceleration generated by the controller using information from digital map



T [s]

### Sharp curve

 Computation of safe speed, deceleration to reach it, out of the speed range

# In vehicle integration



- A front vehicle cuts in our lane
  - Deceleration (smooth) to reach safe distance
  - Acceleration of the lead vehicle, our vehicle accelerates (small acceleration)

## **Smart and Green ACC: Results and Strategies**



Time(s)

Time(s)

## **Smart and Green ACC: Testing**









## Demonstrated the functional behaviour of SAGA system

- Front vehicle detected
- Deceleration command
- Following mode

# Conclusion

- Energy optimized ADAS function, taking into account safety and energy efficiency
- Integrated in car ECU
- Enhanced perception and Digital Map integration
- Evaluation of green ADAS and engine test cycle (NEDC...)?

## References

Sagar Akhegaonkar, Sebastien Glaser, Lydie Nouveliere, Frederic Holzmann, "Smart and Green ACC: As Applied to a Through the Road Hybrid Electric Vehicle", Advanced Microsystems for Automotive Applications 2014 - Smart Systems for Safe, Clean and Automated Vehicles, Springer International Publishing, pp 15-27, ISBN No: 978-3-319-08086-4, 2014.

Sebastien Glaser, Sagar Akhegaonkar, Olivier Orfila, Lydie Nouveliere, Frederic Holzmann, "Smart And Green ACC, Safety and efficiency for a longitudinal driving assistance", Advanced Microsystems for Automotive Applications 2013 - Smart Systems for Safe and Green Vehicles, pp 123-135, ISBN No: 978-3-319-00476-1, 2013.

R. Potarusov, L. Nouvelière, O. Orfila, S. Glaser, "Smart and green adaptive cruise control for an electric vehicle: first results", 7th IFAC Conference on Manufacturing Modelling, Management, and Control, Volume VII, Part I, pp 596-601 – ISBN No 978-3-902823-35-9, ISSN No 1474-6670, 2013.



lydie.nouveliere@ibisc.univ-evry.fr

