From Flatness-Based to Model-Free Control Design for Wheeled Vehicles

B. d'Andréa-Novel^a L. Menhour^b M. Fliess ^{c,d} H. Mounier ^e

^aMines-ParisTech, Centre de robotique CAOR ^bUniversité de Reims ^cLIX (CNRS, UMR 7161) École polytechnique ^dA.L.I.E.N., 24-30 rue Lionnois, BP 60120, 54003 Nancy, France www.alien-sas.com ^eL2S (UMR 8506), CNRS - Supélec, Université Paris Sud

> Journées Automatique et Automobile Orléans, France, 5-6 Novembre 2014

1

Problem statement	Controllers design	Validation results	Conclusions
00000		000	00

Outline

Controllers design
 Flatness-based control
 Model-Free Control

3 Validation results

Problem statement	Controllers design	Validation results	Conclusions

Outline

Controllers design
 Flatness-based control
 Model-Free Control

3 Validation results

4 Conclusions

∃ >

Controllers design

Validation results

Conclusions 00

Motivations

Vehicle dynamics behavior

Combined longitudinal and lateral control to perform some coupled maneuvers

Coupled maneuvers

- Lane-change maneuvers
- Obstacle avoidance
- Combined lane-keeping and steering control during critical driving situations

Θ ...

Problem	statement
00000	

Validation results

 u_{2}^{2}

Conclusions

Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model

$$\begin{cases} ma_{x} = m(\dot{V}_{x} - \dot{\psi}V_{y}) = (F_{x1} + F_{x2}) \\ ma_{y} = m(\dot{V}_{y} + \dot{\psi}V_{x}) = (F_{y1} + F_{y2}) \\ l_{z}\ddot{\psi} = M_{z1} + M_{z2} \end{cases}$$
$$\Rightarrow \begin{cases} \dot{V}_{x} \\ \dot{V}_{y} \\ \ddot{\psi} \end{cases} = \dot{x} = f(x, t) + g(x, t)u + g_{1}u_{1}u_{2} + g_{2}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{3}u_{3}u_{3} + g_{3}u_{3}u_{3} + g_{3}u_{$$

• Inputs: $u_1 = C_{\omega}$ acceleration/braking torque and $u_2 = \delta$ steering wheel angle

• F_{xi} and F_{yi} depend nonlinearly on u_1 and u_2 .

Controllers design

Validation results

Conclusions

Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model

$$\dot{x} = f(x, t) + g(x, t)u + g_1u_1u_2 + g_2u_2^2$$

where:

$$f(x,t) = \begin{bmatrix} \dot{\psi} V_{y} - \frac{l_{\omega}}{mR} (\dot{\omega}_{r} + \dot{\omega}_{f}) \\ -\dot{\psi} V_{x} + \frac{1}{m} \left(-C_{f} \left(\frac{V_{y} + L_{1} \dot{\psi}}{V_{x}} \right) - C_{r} \left(\frac{V_{y} - L_{2} \dot{\psi}}{V_{x}} \right) \right) \\ \frac{1}{l_{z}} \left(-L_{1} C_{f} \left(\frac{V_{y} + L_{1} \dot{\psi}}{V_{x}} \right) + L_{2} C_{r} \left(\frac{V_{y} - L_{2} \dot{\psi}}{V_{x}} \right) \right) \end{bmatrix},$$

$$g(x,t) = \begin{bmatrix} \frac{1}{mR} & \frac{C_{f}}{m} \left(\frac{V_{y} + L_{1} \dot{\psi}}{V_{x}} \right) \\ 0 & (C_{f} R - l_{\omega} \dot{\omega}_{f}) / mR \\ 0 & (L_{1} C_{f} R - L_{1} l_{\omega} \dot{\omega}_{f}) / l_{z} R \end{bmatrix}, g_{1} = \begin{bmatrix} 0 \\ \frac{1}{mR} \\ \frac{L_{1}}{l_{z}R} \end{bmatrix}, g_{2} = \begin{bmatrix} \frac{-C_{f}}{m} \\ 0 \\ 0 \end{bmatrix}.$$

Remark: nonlinear terms such as u_1u_2 and u_2^2 are neglected, then the following system is considered:

$$\dot{x} = f(x,t) + g(x,t)u$$

イロト イヨト イヨト

э

Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model

Coupled nonlinear vehicle model for control design

$$\left\{\begin{array}{c} \dot{V}_{x} \\ \dot{V}_{y} \\ \ddot{\psi} \end{array}\right\} = f(x,t) + g(x,t)u$$

Acceleration/Braking Torque

$$u_1 = C_{\omega} \Leftrightarrow \begin{cases} u_1 = T_b & \text{if } Braking Torque \\ u_1 = T_m & \text{if } Acceleration Torque \end{cases}$$

2 Steering wheel angle $u_2 = \delta$.

Two outputs:

Longitudinal motion.

Combined lateral and yaw motions.

Problem	statement
00000	

Validation results

Nonlinear Model

Longitudinal and lateral control

General block diagram of control approach

- Control inputs Steering wheel angle $\delta(t)$ and acceleration/braking torque C_{ω} .
- Outputs longitudinal speed $V_x(t)$ and yaw rate $\dot{\psi}(t)$.

Control and estimation approaches

- Flatness control.
- Model-free control.
- Algebraic identification techniques.

Problem	statement

Validation results

Outline

Controllers design
 Flatness-based control
 Model-Free Control

3 Validation results

4 Conclusions

Controllers design

Validation results

Conclusions

Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness property: Definition

Consider the system

$$\dot{x} = F(x, u)$$

there exists a vector-valued function h such that y = h(x, u, u, ..., u^(r)) where y = (y, ..., y_m) ∈ ℝ^m, r ∈ ℕ;
the components of x = (x, ..., x_n) and u = (u, ..., u_m) may be expressed as x = A(y, y, ..., y^(r_x)), r_x ∈ ℕ u = B(y, y, ..., y^(r_x)), r_u ∈ ℕ

Remember that y in $\dot{x} = F(x, u)$ is called a *flat output*.

Validation results

Conclusions 00

Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (1/2)

We want to show that y_1 and y_2 given by

- First output: the longitudinal speed $y_1 = V_x$
- Second output: the angular momentum of a point on the axis between the centers of the front and rear axles $y_2 = L_f m V_y I_z \dot{\psi}$

define flat outputs.

Some algebraic manipulations yield

$$x = \begin{bmatrix} V_{x} \\ V_{y} \\ \dot{\psi} \end{bmatrix} = A(y_{1}, y_{2}, \dot{y}_{2}) = \begin{bmatrix} y_{1} \\ \frac{y_{2}}{L_{f}m} - \left(\frac{l_{z}}{L_{f}m}\right) \left(\frac{L_{f}my_{1}\dot{y}_{2} + C_{r}(L_{f} + L_{r})y_{2}}{C_{r}(L_{f} + L_{r})(l_{z} - L_{r}L_{f}m) + (L_{f}my_{1})^{2}}\right) \\ - \left(\frac{L_{f}my_{1}\dot{y}_{2} + C_{r}(L_{f} + L_{r})y_{2}}{C_{r}(L_{f} + L_{r})(l_{z} - L_{r}L_{f}m) + (L_{f}my_{1})^{2}}\right) \end{bmatrix}$$

and
$$\begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = B(y, \dot{y}, \cdots, y^{(r_{u})}) = \Delta^{-1}(y_{1}, y_{2}, \dot{y}_{2}) \left(\begin{bmatrix} \dot{y}_{1} \\ \ddot{y}_{2} \end{bmatrix} - \Phi(y_{1}, y_{2}, \dot{y}_{2})\right)$$

More details are given in [L. Menhour, B. d'Andréa-Novel, M. Fliess and H. Mounier, "Coupled nonlinear vehicle control: Flatness-based setting with algebraic estimation techniques", *Control Engin. Practice*, vol. 22, 135-146, 2014.]

From Flatness-Based to Model-Free Control Design

Validation results

Conclusions 00

Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (2/2)

The flatness property holds therefore if the matrix Δ is invertible.

$$\det(\Delta(y_1, y_2, \dot{y}_2)) = \frac{(l_{\omega}\dot{\omega}_f - C_f R)(L_f^2 y_1^2 m^2 - C_r(L_f + L_r)L_r L_f m + C_r I_z L)}{l_z R^2 y_1 m^2} \neq 0$$

• $\dot{\omega}_f << RC_f/I_{\omega}$, then: RC_f/I_{ω} is around 10⁴, then $I_{\omega}\dot{\omega}_f - C_f R \neq 0$. • $I_z > L_f m$, then: $(L_f^2 y_1^2 m^2 - C_r (L_f + L_r) L_r L_f m + C_r I_z L) \neq 0$.

Therefore y_1 and y_2 constitute flat outputs for our system. Then, we have

 Δ being invertible, we can obtain the following closed-loop controller:

$$\begin{bmatrix} \dot{y}_1 \\ \ddot{y}_2 \end{bmatrix} = \begin{bmatrix} \dot{y}_1^{ref} + K_1^1 e_{y_1} + K_1^2 \int e_{y_1} dt \\ \ddot{y}_2^{ref} + K_2^1 \dot{e}_{y_2} + K_2^2 e_{y_2} + K_2^3 \int e_{y_2} dt \end{bmatrix}$$

where,
$$e_{y_1} = y_1^{ref} - y_1 = V_x^{ref} - V_x$$
 and $e_{y_2} = y_2^{ref} - y_2$.

< A

< ∃ >

Validation results

Conclusions

Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (2/2)

The flatness property holds therefore if the matrix Δ is invertible.

$$\det(\Delta(y_1, y_2, \dot{y}_2)) = \frac{(l_{\omega}\dot{\omega}_f - C_f R)(L_f^2 y_1^2 m^2 - C_r (L_f + L_r)L_r L_f m + C_r I_z L)}{l_z R^2 y_1 m^2} \neq 0$$

• $\dot{\omega}_f << RC_f/I_{\omega}$, then: RC_f/I_{ω} is around 10⁴, then $I_{\omega}\dot{\omega}_f - C_f R \neq 0$. • $I_z > L_f m$, then: $(L_f^2 y_1^2 m^2 - C_r (L_f + L_r) L_r L_f m + C_r I_z L) \neq 0$.

Therefore y_1 and y_2 constitute flat outputs for our system. Then, we have

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \Delta^{-1}(y_1, y_2, \dot{y}_2) \left(\begin{bmatrix} \dot{y}_1 \\ \ddot{y}_2 \end{bmatrix} - \Phi(y_1, y_2, \dot{y}_2) \right)$$

 Δ being invertible, we can obtain the following closed-loop controller:

$$\begin{bmatrix} \dot{y}_1 \\ \ddot{y}_2 \end{bmatrix} = \begin{bmatrix} \dot{y}_1^{ref} + K_1^1 e_{y_1} + K_1^2 \int e_{y_1} dt \\ \ddot{y}_2^{ref} + K_2^1 \dot{e}_{y_2} + K_2^2 e_{y_2} + K_2^3 \int e_{y_2} dt \end{bmatrix}$$

where, $e_{y_1} = y_1^{ref} - y_1 = V_x^{ref} - V_x$ and $e_{y_2} = y_2^{ref} - y_2$.

- 一司

Controllers design

Validation results

Conclusions 00

Flatness-based control

Flatness-based control and algebraic estimation

Flatness-based control law and algebraic estimation

 $\delta(t) = f_{\delta}(y_{1}^{ref}, y_{2}^{ref}, \dot{y}_{1}^{ref}, \dot{y}_{2}^{ref}, \ddot{y}_{2}^{ref}, y_{1}, y_{2}, \dot{y}_{2})$

$$C_{\omega}(t) = f_{C_{\omega}}(y_1^{ref}, y_2^{ref}, \dot{y}_1^{ref}, \dot{y}_2^{ref}, \ddot{y}_2^{ref}, y_1, y_2, \dot{y}_2)$$

Algebraic estimation methods will be be used, as detailed later on, to filter the signals involved and their time derivatives.

[Fliess and Sira-Ramírez 2008]

- ∢ ∃ ▶

Controllers design

Validation results

Conclusions 00

Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Difficulty to obtain a realistic vehicle model

It is very hard or sometimes impossible to obtain a realistic vehicle model due to parametric uncertainties and unknown dynamics

- Tire cornering stiffness coefficients (C_f and C_r).
- Aerodynamic forces.
- Road geometry: road bank and slop angles.
- Road adherence.
- Vehicle mass.
- Position of center of gravity.
- ...

Controllers design

Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Parameter variations

(日) (周) (三) (三)

Controllers design

Image: A matrix

Model-Free Control

speed V_x

Model-Free longitudinal and lateral control: Motivation

Parameter variations

.

Controllers design

Validation results

Model-Free Control

Model-Free longitudinal and lateral control: Motivation

More details are given in [L. Menhour, B. d'Andréa-Novel, M. Fliess, H. Mounier, "Multivariable decoupled

longitudinal and lateral vehicle control: A model-free design", IEEE Conf. Decision Control, Florence, 2013.]

JAA 2014

Problem	statement

Validation results

Model-Free Control

Model-Free Control: Background

Local model

The following local model can be used for Model-Free control approach

$$y^{(\nu)} = F + \alpha u$$

• ν is the derivation order, which is equal, in most of the cases, to 1 or 2.

• α is a constant parameter and can be chosen by the user. In a lot of cases ν is chosen equal to 1, the local model then becomes

$$\dot{y} = F + \alpha u$$

and the desired behavior is obtained using the following i-PI controller:

$$u = \frac{\left(-F + \dot{y}^d + K_p e + K_i \int edt\right)}{\alpha}$$

with $e = y - y^d$ is the tracking error, y^d is the desired output trajectory, K_p , K_i , K_d are gains of the i-PI.

A D > A A P >

Problem statement	Controllers design	Validation results	Conclusions
00000	000000000000000000000000000000000000000	000	00
Model-Free Control			

Algebraic estimation

Basic principles

Aim: find an estimate of the first derivative of a signal

$$y(t) = a_0 + a_1 t, a_0, a_1 \in \mathbb{R}$$

Problem statement 00000	Controllers design	Validation results 000	Conclusions
Model-Free Control			

Algebraic estimation

Basic principles

$$\frac{Y(s)}{s^2} + \frac{1}{s}\frac{dY(s)}{ds} = -\frac{a_1}{s^4}$$

$$\Downarrow \left\{ \begin{array}{l} \frac{c}{s^{\alpha}}, \ \alpha \geq 1, \ c \in \mathbb{C} \Rightarrow c \frac{t^{\alpha-1}}{(\alpha-1)}, \ t > 0 \\ \\ \frac{1}{s^{\alpha}} \frac{d^{n}y}{ds^{n}}, \ \Rightarrow \int_{0}^{t} \int_{0}^{t_{\alpha-1}} \cdots \int_{0}^{t_{1}} (-1)^{n} \tau^{n} y(\tau) dt_{1} \cdots dt_{\alpha-1} dt \\ \\ \Rightarrow \frac{(-1)^{n}}{(\alpha-1)!} \int_{0}^{t} (t-\tau)^{\alpha-1} \tau^{n} y(\tau) d\tau \end{array} \right.$$

$$\hat{a}_1 = -\frac{3!}{T^3} \int_0^T (T-2\tau) y(\tau) d\tau$$

- 一司

Problem statement 00000	Controllers design	Validation results	Conclusions 00
Model-Free Control			
Algebraic estimat	ion		

Basic principles

$$d_m(t) = d_0 + d_1 t, \ t \leq 0, \ d_0, \ d_1 \in \mathbb{R}$$

$$d_0 = \frac{2}{T^2} \int_0^T (2T - 3\tau) d_m(\tau) d\tau$$

$$d_1 = -rac{6}{T^3}\int_0^T (T-2 au) d_m(au) d au$$

- $d_0(t)$ is a natural filter of the measured signal $d_m(t)$.
- We have studied the properties of these numerical filters.

[F. Garcia Collado, B. d'A-N, M. Fliess, H. Mounier, GRETSI, 2009]

Problem statement Cor	ontrollers design	Validation results	Conclus
	000000000000000000000000000000000000000		

Model-Free Control

Algebraic estimation of F

Estimation of F

The following local model

$$\dot{y} = F + \alpha u$$

can be rewritten in the operational domain as follows:

$$sY = \frac{\Phi}{s} + \alpha U + y(0)$$

After some manipulations in the operational domain, it yields in the time domain the following real time estimator of F

$$F_{\text{est}}(t) = -\frac{6}{\tau^3} \int_{t-\tau}^t \left[(\tau - 2\sigma) y(\sigma) + \alpha \sigma (\tau - \sigma) u(\sigma) \right] d\sigma$$

where τ is a small time window.

For more details see [M. Fliess and C. Join, "Model-free control", Int. J. Control, 86(12), pages 2228-2252, 2013]

Controllers design

Validation results

Conclusions 00

Model-Free Control

Decoupled Vehicle control based on Model-Free control

Control design scheme

The design of longitudinal and lateral vehicle control requires:

- Two Control Inputs
 - Control of longitudinal motion via acceleration/braking torque: $u_1 = C_{\omega}$.
 - Control of lateral motion via steering angle: $u_2 = \delta$.
- Two outputs

< ∃ >

Problem	statement

Validation results

Model-Free Control

Model Free longitudinal and lateral vehicle control with the flat outputs

Model Free Control with the flat outputs

The flat outputs are considered in the model free control context

$$\begin{cases} y_1 = V_x \\ y_2 = L_f m V_y - I_z \dot{\psi} \end{cases}$$

Problem	statement

Validation results

Model-Free Control

Model Free longitudinal and lateral vehicle control with the flat outputs

Model Free Control with the flat outputs

Based on the flatness property, the following two sub-models are naturally considered:

Longitudinal local model:

$$y_1^{(\nu_1)} = F_1 + \alpha_1 u_1$$

• Lateral local model: $y_2^{(\nu_2)} = F_2 + \alpha_2 u_2$

with $\nu_1 = 1$ and $\nu_2 = 2$.

More details are given in [L. Menhour, B. d'Andréa-Novel, M. Fliess, H. Mounier, "Multivariable decoupled longitudinal and lateral vehicle control: A model-free design", IEEE Conf. Decision Control, Florence, 2013.]

- ∢ ∃ ▶

Problem	statement

Validation results

Model-Free Control

Decoupled Vehicle control based on Model-Free control with natural outputs

Model-Free control with natural outputs

It must be pointed out that the two flat outputs depend on geometrical and inertial parameters. So, to be totally parameter-independent, an idea in the context of MFC is to consider the following natural outputs, which can be obtained through direct measurements: $(v_1 = l \text{ ongitudinal speed})$

 $\begin{cases} y_1 = \text{Longitudinal speed} \\ y_2 = \text{Lateral deviation} \end{cases}$

Based on the above natural vehicle outputs, the following two sub-models are considered: $\label{eq:sub-model}$

Longitudinal local model:

$$\boldsymbol{y}_1^{(\nu_1)} = \boldsymbol{F}_1 + \alpha_1 \boldsymbol{u}_1$$

Lateral local model:

$$y_2^{(\nu_2)} = F_2 + \alpha_2 u_2$$

with $\nu_1 = 1$ and $\nu_2 = 2$.

Controllers design

Validation results

Conclusions 00

Model-Free Control

Model-free control with natural outputs

Model-free control and algebraic estimation

• Longitudinal i-P controller:

$$u_1 = \frac{1}{\alpha_1} \left(-\hat{F}_1 + \hat{y}_1^d - \mathcal{K}_p^{y_1} e_{y_1} \right)$$

and the estimated value of \hat{F}_1 is given by the following algebraic estimator:

$$\hat{F}_{1}(t) = -\frac{6}{\tau^{3}} \int_{t-\tau}^{t} (\tau - 2\sigma) y_{1}(\sigma) d\sigma - \frac{6\alpha}{\tau^{3}} \int_{t-\tau}^{t} \sigma(\tau - 2\sigma) u_{1}(\sigma) d\sigma$$

Lateral i-PD controller:

$$u_{2} = \frac{1}{\alpha_{2}} \left(-\hat{F}_{2} + \hat{y}_{2}^{d} - K_{d}^{y_{2}} \dot{e}_{y_{2}} - K_{p}^{y_{2}} e_{y_{2}} \right)$$

and \hat{F}_2 is given also by the following algebraic estimator: $\hat{F}_2(t) = -\frac{60}{\tau^5} \int_{t-\tau}^t (\tau^2 + 6\sigma^2 - 6\tau\sigma) y_2(\sigma) d\sigma - \frac{30\alpha}{\tau^5} \int_{t-\tau}^t (\tau - \sigma)^2 \sigma^2 u_2(\sigma) d\sigma$

ヘロト 人間 ト くほ ト くほ トー

Problem statement 00000	Controllers design	Validation results	Conclusions

Outline

Problem statement

Controllers design
 Flatness-based control
 Model-Free Control

3 Validation results

Conclusions

.∋...>

Controllers design

Validation results ●00

Validation

Controllers validation

Desired trajectory versus the closed-loop trajectories with the different controllers

э

Image: A math a math

Problem statement 00000	Controllers design	Validation results ○●○	Conclusions
Validation			

Controllers validation

Controllers design

Validation results 00● Conclusions 00

Validation

Controllers validation

JAA 2014

Problem statement 00000	Controllers design	Validation results 000	Conclusions

Outline

Problem statement

Controllers design
 Flatness-based control
 Model-Free Control

3 Validation results

∃ >

Problem statement 20000	Controllers design	Validation results	Conclusions ●O
Conclusions			

Conclusion

- This new MFC strategy has been shown to be efficient in the context of global chassis control, using firstly a Matlab simulation environment but also using a more realistic interconnected SiVIC/RTMaps platform.
- It is naturally robust w.r.t. parameter uncertainties and the choice of the i-P or i-PD gains is quite easy.

Problem statement	Controllers design	Validation results	Conclusions ⊙●
Conclusions			

Thank you very much Questions?

This work was partially supported by the French national project INOVE/ANR 2010 BLANC 308