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Motivations

Vehicle dynamics behavior

(1)

(2)

Obstacle

Combined longitudinal and lateral control to
perform some coupled maneuvers

Coupled maneuvers

Lane-change maneuvers

Obstacle avoidance

Combined lane-keeping and steering
control during critical driving
situations

...
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Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model


max = m(V̇x − ψ̇Vy ) = (Fx1 + Fx2)

may = m(V̇y + ψ̇Vx ) = (Fy1 + Fy2)

Iz ψ̈ = Mz1 + Mz2


⇔


V̇x

V̇y

ψ̈

 = ẋ = f (x , t) + g(x , t)u + g1u1u2 + g2u2
2

Inputs: u1 = Cω acceleration/braking torque and u2 = δ steering wheel angle

Fxi and Fyi depend nonlinearly on u1 and u2.


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Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model

ẋ = f (x , t) + g(x , t)u + g1u1u2 + g2u2
2

where:

f (x , t) =


ψ̇Vy − Iω

mR
(ω̇r + ω̇f )

−ψ̇Vx + 1
m

(
−Cf

(
Vy +L1ψ̇

Vx

)
− Cr

(
Vy−L2ψ̇

Vx

))
1
Iz

(
−L1Cf

(
Vy +L1ψ̇

Vx

)
+ L2Cr

(
Vy−L2ψ̇

Vx

))
,

g(x , t) =


1

mR
Cf
m

(
Vy +L1ψ̇

Vx

)
0 (Cf R − Iωω̇f )/mR

0 (L1Cf R − L1Iωω̇f )/Iz R

 , g1 =


0
1

mR

L1
Iz R

 , g2 =

 −Cf
m
0
0

 .
Remark: nonlinear terms such as u1u2 and u2

2 are neglected, then the following system
is considered:

ẋ = f (x , t) + g(x , t)u

From Flatness-Based to Model-Free Control Design JAA 2014 6



Problem statement Controllers design Validation results Conclusions

Nonlinear Model

Coupled nonlinear 3DoF Two wheels vehicle model

Coupled nonlinear vehicle model for control design
V̇x

V̇y

ψ̈

 = f (x , t) + g(x , t)u

Two inputs
1 Acceleration/Braking Torque

u1 = Cω ⇔
{

u1 = Tb if Braking Torque
u1 = Tm if Acceleration Torque

}
2 Steering wheel angle u2 = δ.

Two outputs:

1 Longitudinal motion.
2 Combined lateral and yaw motions.
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Nonlinear Model

Longitudinal and lateral control

General block diagram of control approach

Control inputs — Steering wheel angle δ(t) and acceleration/braking torque Cω .

Outputs — longitudinal speed Vx (t) and yaw rate ψ̇(t).

 

Nonlinear 

vehicle 

model 

 

 )(2 ty

)(1 ty

1ye

2ye

C

Nonlinear control 

Acceleration/braking control 

Steering wheel control  

Control and estimation approaches

Flatness control.

Model-free control.

Algebraic identification techniques.
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Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness property: Definition

Consider the system

ẋ = F (x , u)

there exists a vector-valued function h such that

y = h(x , u, u̇, · · · , u(r))

where y = (y , · · · , ym) ∈ Rm, r ∈ N;

the components of x = (x , · · · , xn) and u = (u, · · · , um) may be expressed as

x = A(y , ẏ , · · · , y (rx )), rx ∈ N
u = B(y , ẏ , · · · , y (ru )), ru ∈ N

Remember that y in ẋ = F (x , u) is called a flat output.
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Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (1/2)

We want to show that y1 and y2 given by

First output: the longitudinal speed y1 = Vx

Second output: the angular momentum of a point on the axis between the
centers of the front and rear axles y2 = Lf mVy − Iz ψ̇

define flat outputs.
Some algebraic manipulations yield

x =

 Vx

Vy

ψ̇

 = A(y1, y2, ẏ2) =


y1

y2
Lf m
−
(

Iz
Lf m

)(
Lf my1 ẏ2+Cr (Lf +Lr )y2

Cr (Lf +Lr )(Iz−Lr Lf m)+(Lf my1)2

)
−
(

Lf my1 ẏ2+Cr (Lf +Lr )y2

Cr (Lf +Lr )(Iz−Lr Lf m)+(Lf my1)2

)


and
[

u1

u2

]
= B(y , ẏ , · · · , y (ru )) = ∆−1(y1, y2, ẏ2)

([
ẏ1

ÿ2

]
− Φ(y1, y2, ẏ2)

)
More details are given in [L. Menhour, B. d’Andréa-Novel, M. Fliess and H. Mounier, “Coupled nonlinear vehicle
control: Flatness-based setting with algebraic estimation techniques”, Control Engin. Practice, vol. 22, 135-146,
2014.]
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Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (2/2)

The flatness property holds therefore if the matrix ∆ is invertible.

det(∆(y1, y2, ẏ2)) =
(Iωω̇f −Cf R)(L2

f y2
1 m2−Cr (Lf +Lr )Lr Lf m+Cr Iz L)

Iz R2y1m2 6= 0

ω̇f << RCf /Iω , then: RCf /Iω is around 104, then Iωω̇f − Cf R 6= 0.

Iz > Lf m, then:
(
L2

f y2
1 m2 − Cr (Lf + Lr )Lr Lf m + Cr Iz L

)
6= 0.

Therefore y1 and y2 constitute flat outputs for our system. Then, we have[
u1

u2

]
= ∆−1(y1, y2, ẏ2)

([
ẏ1

ÿ2

]
− Φ(y1, y2, ẏ2)

)
∆ being invertible, we can obtain the following closed-loop controller:[

ẏ1

ÿ2

]
=

[
ẏ ref

1 + K 1
1 ey1 + K 2

1

∫
ey1 dt

ÿ ref
2 + K 1

2 ėy2 + K 2
2 ey2 + K 3

2

∫
ey2 dt

]

where, ey1 = y ref
1 − y1 = V ref

x − Vx and ey2 = y ref
2 − y2.
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Flatness-based control

Flatness based nonlinear longitudinal/lateral control

Flatness proof of the nonlinear two wheels vehicle model (2/2)

The flatness property holds therefore if the matrix ∆ is invertible.

det(∆(y1, y2, ẏ2)) =
(Iωω̇f −Cf R)(L2

f y2
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ω̇f << RCf /Iω , then: RCf /Iω is around 104, then Iωω̇f − Cf R 6= 0.

Iz > Lf m, then:
(
L2

f y2
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)
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ÿ2
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∆ being invertible, we can obtain the following closed-loop controller:[

ẏ1

ÿ2

]
=

[
ẏ ref

1 + K 1
1 ey1 + K 2

1

∫
ey1 dt

ÿ ref
2 + K 1

2 ėy2 + K 2
2 ey2 + K 3

2

∫
ey2 dt

]

where, ey1 = y ref
1 − y1 = V ref

x − Vx and ey2 = y ref
2 − y2.
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Flatness-based control

Flatness-based control and algebraic estimation

Flatness-based control law and algebraic estimation

δ(t) = fδ(y ref
1 , y ref

2 , ẏ ref
1 , ẏ ref

2 , ÿ ref
2 , y1, y2, ẏ2)

Cω(t) = fCω (y ref
1 , y ref

2 , ẏ ref
1 , ẏ ref

2 , ÿ ref
2 , y1, y2, ẏ2)

Algebraic estimation methods will be be used, as detailed later on, to filter the signals
involved and their time derivatives.
[Fliess and Sira-Raḿırez 2008]
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Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Difficulty to obtain a realistic vehicle model

It is very hard or sometimes impossible to obtain a realistic vehicle model due to
parametric uncertainties and unknown dynamics

Tire cornering stiffness coefficients (Cf and Cr ).

Aerodynamic forces.

Road geometry: road bank and slop angles.

Road adherence.

Vehicle mass.

Position of center of gravity.

...
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Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Parameter variations
Example of linear tire models

Linear tire models: Fyf = Cf

(
δ − β − Lf ψ̇

Vx

)
Fyr = −Cr

(
β − Lr ψ̇

Vx

)
Variation of sideslip
angle and vertical
forces Fzi

Cr,f
Cr,f

+-

Theoretical tire characteristics
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Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Parameter variations
Example of linear tire models

Linear tire models: Fyf = Cf

(
δ − β − Lf ψ̇

Vx

)
Fyr = −Cr

(
β − Lr ψ̇

Vx

)
Variation of longitudinal
speed Vx
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Model-Free Control

Model-Free longitudinal and lateral control: Motivation

Previous results: Nominal vehicle flatness-based control
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3DoF−NLTWVM + flat controller

Simulation test with Cf ∗ 0.3 and Cr ∗ 0.3: trajectory tracking with nonlinear
flatness-based vehicle control

More details are given in [L. Menhour, B. d’Andréa-Novel, M. Fliess, H. Mounier, “Multivariable decoupled

longitudinal and lateral vehicle control: A model-free design”, IEEE Conf. Decision Control, Florence, 2013.]
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Model-Free Control

Model-Free Control: Background

Local model
The following local model can be used for Model-Free control approach

y (ν) = F + αu

ν is the derivation order, which is equal, in most of the cases, to 1 or 2.

α is a constant parameter and can be chosen by the user.
In a lot of cases ν is chosen equal to 1, the local model then becomes

ẏ = F + αu

and the desired behavior is obtained using the following i-PI controller:

u =

(
−F + ẏd + Kpe + Ki

∫
edt
)

α

with e = y − yd is the tracking error, yd is the desired output trajectory, Kp , Ki , Kd

are gains of the i-PI.
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Model-Free Control

Algebraic estimation

Basic principles

Aim: find an estimate of the first derivative of a signal

y(t) = a0 + a1t, a0, a1 ∈ R

Use powers of s and derivatives w.r.t. s︷ ︸︸ ︷

Y (s) = a0

s + a1

s2

sY (s) = a0 + a1

s

d
ds (sY (s)) = − a1

s2 ⇔ Y (s) + s
dY (s)

ds
= −a1

s2︸ ︷︷ ︸
⇓

Use negative powers of s to filter the signal

⇓
Y (s)

s2 + 1
s

dY (s)
ds = − a1

s4
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Model-Free Control

Algebraic estimation

Basic principles

Y (s)
s2 + 1

s
dY (s)

ds = − a1

s4

⇓



c
sα , α ≥ 1, c ∈ C⇒ c tα−1

(α−1) , t > 0

1
sα

dny
dsn , ⇒

∫ t

0

∫ tα−1

0
· · ·

∫ t1

0
(−1)nτny(τ)dt1 · · · dtα−1dt

⇒ (−1)n

(α−1)!

∫ t

0
(t − τ)α−1τny(τ)dτ

â1 = − 3!
T 3

∫ T

0
(T − 2τ)y(τ)dτ
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Model-Free Control

Algebraic estimation

Basic principles

dm(t) = d0 + d1t, t ≤ 0, d0, d1 ∈ R

d0 = 2
T 2

∫ T

0
(2T − 3τ)dm(τ)dτ

d1 = − 6
T 3

∫ T

0
(T − 2τ)dm(τ)dτ

d0(t) is a natural filter of the measured signal dm(t).

We have studied the properties of these numerical filters.

[F. Garcia Collado, B. d’A-N, M. Fliess, H. Mounier, GRETSI, 2009]
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Model-Free Control

Algebraic estimation of F

Estimation of F
The following local model ẏ = F + αu

can be rewritten in the operational domain as follows:

sY =
Φ

s
+ αU + y(0)

After some manipulations in the operational domain, it yields in the time domain the
following real time estimator of F

Fest(t) = −
6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ

where τ is a small time window.

For more details see [M. Fliess and C. Join, “Model-free control”, Int. J. Control,
86(12), pages 2228-2252, 2013]
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Model-Free Control

Decoupled Vehicle control based on Model-Free control

Control design scheme

The design of longitudinal and lateral vehicle control requires:

Two Control Inputs

Control of longitudinal motion via acceleration/braking torque: u1 = Cω .
Control of lateral motion via steering angle: u2 = δ.

Two outputs

From Flatness-Based to Model-Free Control Design JAA 2014 23
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Model-Free Control

Model Free longitudinal and lateral vehicle control with the
flat outputs

Model Free Control with the flat outputs

The flat outputs are considered in the model free control context{
y1 = Vx

y2 = Lf mVy − Iz ψ̇

Control level 

Steering control 

Braking/driving control 

Simulator of the vehicle dynamics  
𝛿(𝑡) 

𝑇𝜔(𝑡) 

Reference outputs 

Lateral output 

Longitudinal output 
𝑒𝑦1  

𝑒𝑦2  
Second output: angular momentum 

First output: longitudinal speed 

𝑦2 

𝑦1 
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Model-Free Control

Model Free longitudinal and lateral vehicle control with the
flat outputs

Model Free Control with the flat outputs

Based on the flatness property, the following two sub-models are naturally considered:

Longitudinal local model:

y
(ν1)
1 = F1 + α1u1

Lateral local model:
y

(ν2)
2 = F2 + α2u2

with ν1 = 1 and ν2 = 2.

More details are given in [L. Menhour, B. d’Andréa-Novel, M. Fliess, H. Mounier, “Multivariable decoupled

longitudinal and lateral vehicle control: A model-free design”, IEEE Conf. Decision Control, Florence, 2013.]
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Model-Free Control

Decoupled Vehicle control based on Model-Free control
with natural outputs

Model-Free control with natural outputs

It must be pointed out that the two flat outputs depend on geometrical and inertial
parameters. So, to be totally parameter-independent, an idea in the context of MFC is
to consider the following natural outputs, which can be obtained through direct
measurements:

{
y1 = Longitudinal speed
y2 = Lateral deviation

Based on the above natural vehicle outputs, the following two sub-models are
considered:

Longitudinal local model:

y
(ν1)
1 = F1 + α1u1

Lateral local model:
y

(ν2)
2 = F2 + α2u2

with ν1 = 1 and ν2 = 2.

From Flatness-Based to Model-Free Control Design JAA 2014 26
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Model-Free Control

Model-free control with natural outputs

Model-free control and algebraic estimation

Longitudinal i-P controller:

u1 =
1

α1

(
−F̂1 + ˆ̇yd

1 − K y1
p ey1

)
and the estimated value of F̂1 is given by the following algebraic estimator:

F̂1(t) = −
6

τ3

∫ t

t−τ
(τ − 2σ)y1(σ)dσ −

6α

τ3

∫ t

t−τ
σ(τ − 2σ)u1(σ)dσ

Lateral i-PD controller:

u2 =
1

α2

(
−F̂2 + ˆ̈yd

2 − K y2
d ėy2 − K y2

p ey2

)
and F̂2 is given also by the following algebraic estimator:

F̂2(t) = −
60

τ5

∫ t

t−τ
(τ2 + 6σ2 − 6τσ)y2(σ)dσ −

30α

τ5

∫ t

t−τ
(τ − σ)2σ2u2(σ)dσ
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Validation

Controllers validation
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Desired trajectory versus the closed-loop trajectories with the different controllers
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Validation

Controllers validation
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Validation

Controllers validation
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three controllers
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Conclusions

Conclusion

This new MFC strategy has been shown to be efficient in the
context of global chassis control, using firstly a Matlab
simulation environment but also using a more realistic
interconnected SiVIC/RTMaps platform.

It is naturally robust w.r.t. parameter uncertainties and the
choice of the i-P or i-PD gains is quite easy.
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Conclusions

Thank you very much
Questions?

This work was partially supported by the French national
project INOVE/ANR 2010 BLANC 308
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